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Figure 1. Given an object in an image (e.g., the red chair in the middle), we learn an in-context token for a concept embedded in this object
(e.g., an ornament of a chair). This token can then be used to generate images with new objects embodying the same concept (left) or to
transfer the concept to given target objects, while maintaining their structure (right). Project page: https://mehdi0xc.github.io/clic

Abstract
This paper addresses the challenge of learning a local

visual pattern of an object from one image, and generat-
ing images depicting objects with that pattern. Learning a
localized concept and placing it on an object in a target im-
age is a nontrivial task, as the objects may have different
orientations and shapes. Our approach builds upon recent
advancements in visual concept learning. It involves ac-
quiring a visual concept (e.g., an ornament) from a source
image and subsequently applying it to an object (e.g., a
chair) in a target image. Our key idea is to perform in-
context concept learning, acquiring the local visual concept
within the broader context of the objects they belong to. To
localize the concept learning, we employ soft masks that
contain both the concept within the mask and the surround-
ing image area. We demonstrate our approach through ob-
ject generation within an image, showcasing plausible em-
bedding of in-context learned concepts. We also introduce
methods for directing acquired concepts to specific loca-
tions within target images, employing cross-attention mech-
anisms, and establishing correspondences between source
and target objects. The effectiveness of our method is
demonstrated through quantitative and qualitative experi-
ments, along with comparisons against baseline techniques.

1. Introduction

Consider the problem of transferring an ornament from one
image of a chair onto another image of a different chair,
even if the chairs are in different orientations (see Fig. 1).
It is evident that a straightforward image-space cut-and-
paste operation is insufficient here. Moreover, attempting
to model the ornament from a single perspective and accu-
rately pasting it onto the other image is a complex task, one
that currently stands as a daunting challenge.

An alternative approach involves harnessing the recently
developed domain of visual concept learning [2, 10, 11, 22,
30] that allows learning the visual concept from a source im-
age and subsequently applying it to a target image. While it
does not provide an exact, one-to-one transfer of the orna-
ment, it does offer a way to transfer the overall concept. Yet,
plausibly learning a local concept from a single image and
applying it in a specific location of an object in the target
image is challenging due to the lack of context (see Fig. 1).

Avrahami et al. [4] have recently presented a technique
called “Break-A-Scene” wherein they learn local concepts
from a single image and then apply them within a gener-
ated image through text-to-image machinery. This tech-
nique can be seemingly applied to our local concept learn-
ing problem as well. However, as we shall show in the fol-
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lowing, our specific task necessitates learning local visual
concepts within the shape’s context rather than in isolation.
Our learned local concepts are intrinsically tied to the ob-
jects in which they are embedded. The method we present
in this paper addresses the intricate challenge of in-context
concept learning, specifically tailored to our requirements.

To learn a visual concept in-context, we apply a person-
alization method that learns a token v∗, where a mask de-
fines the spatial region of the acquired concept (e.g., orna-
ment/window). Rather than applying the losses only under
the given mask, we compute a loss with a non-binary mask,
that is, a soft mask that considers both the in-mask concept
and the out-mask portion of the image. Fig. 2 shows two ex-
amples generated with a simple text prompt, “A chair/house
with v∗ style” where one is with the in-context learned con-
cept (the ornament/windows in the figure), and one without.
As can be seen, the in-context visual concept learning suc-
cessfully embeds the concept only in the expected region of
the generated results.

We show that the acquired concept can be directed to
a specific location within a given target image through the
optimization of cross-attention layers and the establishment
of correspondences between source and target objects. We
further present an automated process for identifying com-
mon concepts when multiple objects embodying a partic-
ular concept are available, which removes the necessity to
manually choose the concept in the source image.

We demonstrate the efficacy of the method via numer-
ous results and multiple quantitative and qualitative experi-
ments and comparisons against baseline methods. We also
show the necessity of having each component of the method
through a series of thorough ablation studies.

2. Related Work
The field of text-conditioned image generation [5, 28, 29,
32] has recently advanced significantly by combining the
power of diffusion models [15, 35–37] and large-scale text-
image datasets [33]. These advancements have had great
contributions to the area of content creation, showcasing the
capacity of these models to produce captivating visual con-
tent, enabling a multitude of creative visual tasks through
image generation and editing [6, 14, 19, 24, 25, 41]. One
such task is to utilize user-defined concepts [10, 30] to ac-
commodate personalization [2, 13, 18, 22, 27, 43, 44], em-
powering users to craft expressive content that seamlessly
blend subjects and artistic styles, often requiring just a small
collection of concept-exemplifying images.

The first attempts to address personalization were Tex-
tual Inversion [10] and DreamBooth [30]. In both works,
given multiple images of a single concept, a text token ded-
icated to that concept is learned. However, while the former
freezes the weights of the diffusion model UNet, the latter
optimizes the UNet, showing better reconstruction and gen-

In Context (Ours)No ContextSource

Figure 2. By learning a concept in-context, the comprehension of
the concept extends beyond its visual attributes to encompass its
relationship with the surrounding context. In this example, when
learning the ornaments and windows in-context, they are placed in
similar semantic locations in the generated images as in the source
image. Conversely, when ornaments are learned without the con-
text, they may be dispersed randomly across the chair and house.

eralization capabilities at the expense of additional time and
memory consumption. Custom Diffusion [22] approaches
this problem by optimizing only the cross-attention layers
of the diffusion UNet, while OFT [27], LoRA [17], and
SVDiff [13] restrict the parameter updating for more effi-
cient and well-behaved optimization. Similarly, PerFusion
[40] introduces a key-locking mechanism along with rank 1
updating for faster, better, and less memory-consuming per-
sonalization. More recently, several works have improved
personalization by decreasing runtime and focusing on a
single input image [9, 11, 18, 31, 34]. Other works learn
multiple concepts [4, 13, 22] or extend the text embedding
space of the diffusion model [2, 43].

In Break-A-Scene [4], multiple concepts are learned
given a single image and user-defined masks. Specifically,
the concepts are learned by using a masked diffusion loss
and restricting the cross-attention maps of the learned to-
kens to the input masks. Unlike their work, our method
addresses the in-context concept learning, specifically tai-
lored to our requirements. Also, concurrent to our work,
RealFill [39] tackles the problem of personalized image in-
painting and outpainting by fine-tuning an inpainting diffu-
sion model [29] on a collection of input images. However,
when RealFill is employed for our concept transfer task, the
relative size of the concept to the base object is not main-
tained, and geometric details are compromised.

Recently, many works have utilized the intermediate fea-
tures of diffusion models for image editing [7, 12, 14, 25,
41], controlled image generation [8, 16, 26], and image un-
derstanding [1, 20, 23, 38, 45]. Prompt2Prompt [14] shows
that by manipulating the cross-attention layers of the diffu-
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Figure 3. In-Context Concept Learning: given image Is and a binary mask Ms, we learn v∗ for a concept outlined by mask Ms in the
context of a base object. Here, the concept is the ornament, and the base object is a chair. Three loss functions are utilized to optimize
v∗ and fine-tune the diffusion model. ℓcon uses a soft-masked diffusion loss to learn the pattern in context. ℓatt ensures that the token
focuses only on the pattern region by restricting the attention maps of v∗ to Ms. By employing a text prompt that is specified for v∗, ℓROI

enhances the reconstruction of the concept by focusing on a local region through masking Is. Concept Transfer: given image Itg , mask
Mtg defining the area of edit, and a user-defined text-prompt containing v∗ optimized in the concept learning step, we add noise to the
latent of Itg and denoise it with the fine-tuned diffusion model obtained from the concept learning step. At each denoising step, we blend
the output of the diffusion model with the masked input to preserve the out-of-mask regions. We also have a cross-attention guidance to
enhance the presence of the pattern in the final output.

sion model, it is possible to edit a certain semantic region of
an image. Attend-and-Excite [8] ensures that the diffusion
model attends to every subject in the text prompt by manip-
ulating the cross-attention maps of the subjects in the gen-
eration process. More recent methods [1, 20] demonstrate
that by optimizing text tokens and cross-attention maps, it
is possible to establish semantic correspondence or segmen-
tation. In our work, we also use the cross-attention maps
of the diffusion model to localize the learned tokens to the
acquired visual concepts in the source image and automati-
cally place them correctly in the target image.

3. Method

Given a source image, denoted as Is, a user-specified
prompt Ps, and a learned or user-provided mask Ms that
marks the Region of Interest (RoI) within the source im-
age, our objective is to learn the concept (e.g., an ornament)
in the RoI. To achieve this objective, we build on previous
works that employed text-to-image diffusion models for the
task of personalization. Such works either optimize a text
token v∗, fine-tune the pretrained text-to-image model, or
their combination. In our work, we opt to use Custom Dif-
fusion [22], optimizing a text token v∗ and simultaneously
fine-tuning the cross-attention layers of the text-to-image
model. To learn the concept in-context (Section 3.1), we
employ multiple loss functions, encouraging the diffusion
model to reconstruct the learned concept in analogous con-
texts but under varying conditions and poses. After learning

the concept, we can either generate images that contain it, or
edit a target image Itg to portray it in a given RoI. The RoI
in the target image is determined either via our Diffusion-
Based RoI Matching Algorithm proposed in Section 3.3 or
directly provided by the user.

3.1. In-Context Concept Learning

To acquire in-context concepts from the source image, we
optimize token v∗ and simultaneously fine-tune the cross-
attention layers of a pretrained T2I diffusion model as done
in Custom Diffusion [22]. We employ three loss func-
tions to ensure effective concept learning and precise in-
context generation. ℓatt helps the model to focus on the RoI.
ℓcontext facilitates in-context concept learning. Although
the concept is learned in-context, ensuring that the token
possesses knowledge of the concept’s inclusion within a
larger object, we employ ℓRoI to safeguard against overfit-
ting the concept to a particular object in the source image.
This approach enhances the concept’s ability to generalize
and transfer to unseen objects, even those from different
categories. Additionally, ℓRoI aids in acquiring a more nu-
anced understanding of the concept’s geometric attributes.

Given the source image Is, its corresponding binary
mask Ms, and a text prompt Ps, we first encode the im-
age and prompt to obtain latent image x0 and text embed-
ding c. Thereafter, by randomly sampling a timestep t from
the interval [1, T ] and a noise ϵ, we construct a noisy latent
xt. We then employ the diffusion model to get ϵθ(xt, c, t)
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while also extracting cross-attention maps for the token v∗

from the decoder layers of the UNet structure. The cross-
attention loss is then computed as:

ℓatt = E(xt,t)

[
∥CAθ (v

∗, xt)−Resize(Ms)∥22
]
, (1)

where CAθ (v
∗, xt) denotes cross-attention maps between

token v∗ and xt averaged over the cross-attention layers of
the upsampling blocks and Resize(Ms) is the resized ver-
sion of Ms that matches the shape of cross-attention maps.

For the context loss, we aim to make the model focus on
in-context reconstruction of the concept in the RoI while si-
multaneously forcing the model to focus on the proper scale
and placement of this concept. To achieve this, we employ
a soft-weighted version of Ms:

Msoft = α+ (1− α)Ms, (2)

where α = 0.5. The context loss is then computed as:

ℓcon = E(xt,c,t)

[
∥Msoft ⊙ (ϵθ (xt, c, t)− ϵ)∥22

]
. (3)

For RoI loss, we use a more concept-oriented prompt “A
photo of v∗” encoded into c∗:

ℓRoI = E(xt,t)

[
∥ϵθ (Ms ⊙ xt, c

∗, t)− ϵ∥22
]

(4)

and we finally add all the losses and perform optimization:

ℓtot = ℓcon + λattℓatt + λRoIℓRoI , (5)

where λatt and λRoI are empirically set to 0.5.

3.2. Concept Transfer

To transfer the learned concept to new objects while pre-
serving the region outside the Region of Interest (RoI), we
utilize masked blended diffusion editing [3]. This involves
adding a specific amount of Gaussian noise to the target im-
age to reach the timestep tstart of the denoising process. We
then begin denoising the image, simultaneously blending
the out-of-mask region of the target image at each denois-
ing step. Additionally, adapted from Attend-and-Excite [8],
we introduce cross-attention guidance to improve control
over the strength of the edit. In this process, we gradually
optimize the latents so that the cross-attention map of the v∗

token increases in the RoI and decreases elsewhere.
Blended Diffusion Editing. Given a target image Itg and
its corresponding mask Mtg , we aim to modify segments
within Mtg ⊙ Itg . First, the target image is encoded, and
xtg is obtained, then an initial timestep tstart is chosen (5 ≤
tstart ≤ 15). Next, we add T − tstart levels of noise to xtg

to obtain x′
tstart

, then, at each timestep 0 < t ≤ tstart,
blended output x′

t is computed as:

x′
t = Mtg ⊙ xt + (1−Mtg)⊙ x′

start. (6)

Source Test Mask

Figure 4. Illustration of the automated masking process on target
images employing the proposed RoI-Matching technique, leverag-
ing a predefined source mask.

Cross-Attention Guidance. After obtaining x′
t, we ex-

tract the attention maps of the v∗ token CAθ(v
∗, x′

t). Then,
we update x′

t according to Equation 7 to enhance the
strength of the attention maps of v∗ within Mtg:

x′′
t = x′

t − η∇El[∥CAθ (v
∗, x′

t)−Mtg∥
2

2]. (7)

Here η is the step size of the guidance. changing this pa-
rameter controls the strength of the edit in the RoI. Finally,
we denoise x′′

t through the UNet.

3.3. RoI Matching

Automatic Target Mask Extraction. Mask extraction on
the target image according to the source input mask can be
automated. The idea is to learn a new token w∗ to the text
encoder, initialized with the already optimized v∗ and op-
timizing it by minimizing our attention loss, ℓatt, using the
prompt “a w∗ region of an OBJECT”, with OBJECT being
the base object in the source image. After 500 steps of op-
timization, we apply the new token on the target or other
source images and execute the denoising process, extract-
ing the attention maps of the token w∗ as the target masks.
By doing this, the model acts as a segmentation method that
segments the corresponding part of the target or source im-
ages. In Fig. 4, we demonstrate that this automatic masking
technique works well both for in-domain and cross-domain
scenarios. Notably, this process is quite fast since we only
fine-tune the newly added token.
Automatic Source Mask Extraction. When multiple
source images sharing the desired concept exist, it can be
automatically identified. To do so, we add a token w∗ to
the text encoder and optimize its embedding and the cross-
attention modules of the diffusion UNet by minimizing the
diffusion loss, given the prompt “An OBJECT with w∗
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Source Test Mask

Figure 5. Given several images with a common pattern, our
method is able to learn the common pattern and locate it even on a
different image with the same pattern.

Source Target Result

Figure 6. An example of selective pattern extraction: We show that
our model can learn distinct patterns from a single image, ensuring
that each token captures only its corresponding pattern. Left, we
choose two different patterns from a single necklace and transfer
them to a bracelet (Right).

style”, OBJECT being the class of base object containing
the pattern. After 500 steps, we extract the attention maps
of w∗ and use them as the source mask, and run our concept
learning pipeline. This method is effective when multiple
images of an object containing the concept exist (Fig. 5) but
for unique concepts, it could be simpler to just provide the
source mask.

4. Results and Comparisons

Here, we first qualitatively demonstrate the effectiveness of
our method in learning concepts in-context. We show that
our learned concepts can be used for generation and trans-
ferred across images. We compare our method with multi-
ple customization methods such as Custom Diffusion [22],
Break-A-Scene [4], and RealFill [39], showing the superi-
ority of our method (Section 4.2). We also provide a user
study, confirming the effectiveness of our method compared
to these baselines. Finally, we ablate the components of our

pipeline to justify our design (Section 4.3).
In all of our experiments, we use StableDiffusion v1.4

from the diffusers library [42]. We run our in-context con-
cept learning for 500 steps, taking approximately 3 minutes
on a single Nvidia RTX3090 GPU. We use the Adam [21]
optimizer with learning rate 1e−5.

4.1. Qualitative Results

Editing. Our method can successfully learn various con-
cepts and transfer them to objects of the same or different
class in an image. Fig. 6 shows that our method can learn
individual concepts from a single image without color and
shape information from other concepts leaking into the to-
ken. Fig. 11 illustrates examples of various classes. Note
that the learned concepts are blended nicely in the target im-
age, attaining the target’s texture and color style even when
the target domain is very different from the source domain,
such as the cartoonish car and house examples. This demon-
strates that our approach does not suffer from overfitting to
the concept or the content of the source image, and it reaf-
firms that a simple copy-and-paste algorithm is not suitable
for achieving our objective.
Generation. To generate an object containing the learned
concept, we employ a two-stage generation strategy. Start-
ing from a Gaussian noise, for the first ts = 5 steps of de-
noising, we use the un-modified UNet with the text prompt
“a photo of an OBJECT” where OBJECT is the object we
want to generate. After the ts steps, we substitute the UNet
with our fine-tuned model and use the text prompt “a photo
of an OBJECT, with v∗ style”.

This way, we leverage the capabilities of the pre-trained
diffusion model in generating general realistic images while
integrating specific patterns and concept details into the out-
put through our fine-tuned model, which possesses an en-
hanced understanding of our desired concept. We present
our generation results in Fig. 11. Observe that concepts
learned from an object (e.g., chair), can be effectively used
to generate other objects embodying the same concepts.

4.2. Comparisons

We compare our method against several personalization
baseline methods, including Custom Diffusion [22], Break-
A-Scene [4], and RealFill [39]. In Custom Diffusion [22],
cross-attention blocks, along with token v∗, are optimized
for customization by minimizing the unmasked diffusion
loss. We run Custom Diffusion in a consistent manner
with our setting, with inputs consisting of the source im-
age and the text prompt “an OBJECT with v∗ style,” where
OBJECT denotes the object category (e.g., chair) embody-
ing the concept. Break-A-Scene [4] learns several concepts
from a single image using masks indicating different sub-
jects. Similar to our setting, we optimize the cross-attention
blocks and token v∗ representing a local mask located on the
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Figure 7. Comparisons. Given a source image and concepts of interest (Left), the task is either to generate an object (written in bold
(Top)) with that concept or transfer the concept to a target object in another image (Bottom). In comparison with alternative methods, our
method clearly remains more faithful to the concept in terms of structure and geometric features in both generation and editing.

concept of interest. We also conduct a comparison against
a concurrent work, RealFill [39], designed for personalized
inpainting/outpainting. RealFill takes multiple images of
a scene as input, randomly applies masks, and refines the
Stable Diffusion inpainting model through a process simi-
lar to DreamBooth [30]. Our transfer task can be viewed
as inpainting. To adapt RealFill to our task, we learn the
concept delineated by the mask on the source image and
optimize the cross-attention blocks of the Inpainting Stable
Diffusion. For transfer, we use the fine-tuned UNet and in-
paint the masked regions of the target image using the token
acquired from the concept present in the source image.

Qualitative Comparison. In Fig. 7, we present quali-
tative comparisons with the baselines. Custom Diffusion
struggles to capture the concept present in the source im-
ages, failing to transfer the concept to the target images ef-
fectively. Break-A-Scene exhibits a relatively good under-
standing of the concept. However, due to the absence of
in-context constraints in the concept-learning process, the
model learns the pattern as an independent object, failing
to transfer the concept as a pattern. This results in un-
wanted color and geometry artifacts. Similarly, in RealFill,

the model learns the token, yet encounters two challenges.
First, using the Stable Diffusion inpainting pipeline results
in the loss of information masked by the target mask, pre-
venting the model from preserving the geometry and color
of the object in the target image (ring in Fig. 7). Second,
the absence of in-context learning causes the model to fill
the entire mask with the pattern without placing it coher-
ently within the target object (table in Fig. 7).

User Study. We also conducted a user study using 30
pairs of source and target images. Results of our method
and three other baselines (depicted in Fig. 7), were pre-
sented to 42 participants. The 30 images were divided into
two sets, each with a consistent number of object classes
(buildings, furniture, jewelry, and kitchenware). Partici-
pants ranked the methods based on “edit quality” (accuracy
in reflecting the source image concept) and “target preserva-
tion” (maintaining the general appearance and color of the
target image). Scores were computed by assigning ranks (4
for the top, 1 for the lowest) and averaging over all samples.
Our method consistently outperformed the three baselines,
as detailed in Table 1. Compared to the second place, Real-
Fill, our method showed a significantly higher score.
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Table 1. User study. Our method has received a significantly
higher score than the alternatives.

Method Average Ranking (↑)

CustomDiffusion [22] 1.96
Break-A-Scene [4] 2.27
RealFill [39] 2.33
Ours 3.43

Source Target

Figure 8. Ablation on ℓatt, ℓRoI , ℓcon. Omitting ℓRoI causes
inaccurate learning of the concept (back seat). Excluding the ℓatt
produces unintended or off-target edits (seats and legs). Removing
ℓcon leads to the loss of geometric features and structures associ-
ated with the concept (back seat) and also results in the transfer of
concepts to undesired regions (the transition between two legs).

4.3. Ablation Studies

Loss Ablations. Fig. 8 illustrates how each loss in our
approach affects the overall performance when the target
region encompasses the entire object. Eliminating ℓRoI

(top right) leads to the loss of geometric and structural pat-
terns from the source concept, particularly noticeable on the
backseat. Removal of ℓatt (bottom left) causes undesired al-
terations on the target, affecting areas such as the legs and
seat. The absence of ℓcon (bottom right) leads to loss of
geometric details and structures associated with the concept
(back seat) and results in the unintended transfer of concepts
to undesired regions (transition between two legs); same ar-
tifacts illustrated in Fig. 2 for the generation process.

Cross-Attention Guidance. As described in Section 3.2,
we use cross-attention guidance to enhance the presence of
the concept to the RoI in the target image while also restrict-
ing it to the RoI. In Fig. 9, one can observe that by changing
the guidance step size η the presence of the concept in the
target image can be adjusted.

5. Discussion and Conclusions
We have addressed the challenge of learning and transfer-
ring visual concepts between images, focusing on acquir-

Increasing guidance step size

Source Target Results

0.0100.00 0.015

Figure 9. Cross-Attention Guidance. By increasing the guidance
step size η the presence of the concept is strengthened.

Source Target Result (No Edit)

Figure 10. Failure Case. When the domain of the source and
target images are too different, concept transfer may fail.

ing and applying local visual concepts in-context. Tra-
ditional cut-and-paste methods have proven insufficient in
these contexts, motivating the exploration of visual con-
cept learning. Our personalization method, which considers
both in-mask and out-mask regions of an image, has proven
successful in embedding concepts accurately. Precise con-
cept placement has been achieved through the optimization
of cross-attention layers and object correspondences, com-
plemented by an automated concept selection process that
streamlines the overall workflow.

We have demonstrated the efficacy and versatility of our
method, and its capability to learn local concepts for edit-
ing and generation. However, we acknowledge certain lim-
itations. Our method may exhibit sub-optimal performance
when there is a significant difference in the domain of the
target image or the objects for generation compared to the
source image (see Fig. 10). Additionally, our optimization
process, while effective, is time-consuming and not appli-
cable to real-time applications. We have validated our ap-
proach through a diverse set of experiments, quantitative
assessment through a user study, a series of qualitative as-
sessments and ablation studies, and comprehensive com-
parisons with baseline methods. Exploring the potential of
our method for 3D concept transfer and geometry editing
presents an intriguing avenue for future research.
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Source

Editing Generation

Target Result Target Result

Figure 11. Results of our concept transfer (Middle) and generation (Right). Concepts delineated by blue curves in the source image are
learned and transferred to target images at the locations indicated by blue curves (Middle). The same concepts are used to generate various
objects in each row (Right). Our method is successful in learning the concept and placing it coherently within the target or generated image.
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CLiC: Concept Learning in Context

Supplementary Material

Here, we provide more results, comparisons, and addi-
tional implementation details to better prove the efficacy of
our technique.

A. Additional Results

In this section, we present supplementary results of our
method. We begin by offering further examples of our con-
cept transfer and generation method, detailed in Section
A.1. Subsequently, we include additional comparison re-
sults against baseline methods in Section A.2.

A.1. Qualitative results

Fig. 12 showcases additional results of our concept trans-
fer and generation applications. The settings employed for
concept transfer and generation are consistent with those
outlined in Sections 3.2 and 4.1. Evidently, our method
successfully learns concepts from a variety of objects and
utilizes these concepts for image editing and generation.

A.2. Comparison

In Figure 13, we present additional comparison results
alongside the four baselines previously introduced in Sec-
tion 4.2. It is clearly demonstrated that our in-context
concept learning approach exhibits superior proficiency in
learning and transferring concepts.

B. Additional Training Details

B.1. Data Augmentation Strategies

To enhance the robustness of our approach, we incorpo-
rated several data augmentation techniques during the train-
ing process. These include implementing random grayscal-
ing to reduce dependence on color features, and preventing
overfitting to specific colors. We also applied random hori-
zontal flipping to introduce pose diversity, as well as zoom-
ing in and out to vary the scale. To address different color
intensities and contrasts, we also employed color jittering.

B.2. Standardized Prompt Templates

For consistency and to prevent the impact of prompt manip-
ulation, we defined a fixed prompt template and used that
for all our experiments. Throughout the Concept Learning
phase, we utilized a standardized prompt template: ”A OB-
JECT with [v*] style”. This uniformity enables effective
concept learning and encoding within the [v*] token.

During zoom-in/out data augmentation, the prompt for-
mat was dynamically adjusted to reflect these changes. For

instance, a zoom-out augmentation led to a prompt alter-
ation to ”A OBJECT with [v*] style, zoomed-out”.

To maintain equitable comparisons, these augmentations
and prompt adjustments were consistently applied across all
baseline methods.

B.3. Scheduler Selection

We opted for the DDIM [36] scheduler for both concept
learning and transfer phases, due to its efficiency, speed,
and simplicity. A maximum of 50 timesteps (T = 50) was
consistently used in all generation and editing tasks.
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Source

Editing Generation

Target Result Target Result

Figure 12. Additional editing and generation results. We have transferred the concept from the source to two targets in each row. We
also used the same concept for generation (the last two images in each row).
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Source Target CLiC (Ours)CustomDiffusion Break- A- Scene RealFill

Figure 13. Additional comparisons. We further compare our concept transfer method with CustomDiffusion [22], Break-A-Scene [4],
and RealFill [39].
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